Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-12T02:12:46.084Z Has data issue: false hasContentIssue false

Age and sedimentary record of inland eolian sediments in Lithuania, NE European Sand Belt

Published online by Cambridge University Press:  20 January 2017

Edyta Kalińska-Nartiša*
Affiliation:
Department of Geology, Faculty of Science, Lund University, Sölvegatan 12, Lund S-223 62, Sweden Institute of Ecology and Earth Sciences, Department of Geology, Faculty of Science, University of Tartu, Ravila Str. 14A, Tartu EE50411, Estonia
Christine Thiel
Affiliation:
Centre for Nuclear Technologies (Nutech), Technical University of Denmark, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark Leibniz Institute for Applied Geophysics, Section S3, Geochronology and Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany
Māris Nartišs
Affiliation:
Faculty of Geography and Earth Sciences, University of Latvia, Alberta Str. 10, Riga LV1586, Latvia
Jan-Pieter Buylaert
Affiliation:
Centre for Nuclear Technologies (Nutech), Technical University of Denmark, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Andrew S. Murray
Affiliation:
Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark
*
*Corresponding author at: Department of Geology, Faculty of Science, Lund University, Sölvegatan 12, Lund S-223 62, Sweden.E-mail address:edyta.kalinska-nartisa@geol.lu.se (E. Kaliñska-Nartiša).

Abstract

We present a study based on four inland eolian locations in Eastern, Central and Southeastern Lithuania belonging to the northeastern part of the ‘European Sand Belt’ (ESB). Although there have been several previous studies of the ESB, this north-eastern extension has not been investigated before in any detail. The sedimentary structural–textural features are investigated and a chronology was derived using optically stimulated luminescence on both quartz and feldspar. The sedimentary structures and the rounding and surface characteristics of the quartz grains argue for a predominance of eolian transport. Additionally, some structural alternations and a significant contribution of non-eolian grains are interpreted as inherited local glacial/glaciofluvial-bearing lithologies.

Three main (glaciolacustrine–) eolian phases are distinguished based on the position in the landscape and the luminescence ages: (1) An older eolian series around 15 to 16 ka, possibly correlated with the cold GS-2a event according to the GRIP stratigraphy, and (2) a younger eolian series around 14.0 ka, possibly representing the GI-1d and 1c events. The older eolian series is underlain by (3) a glaciolacustrineeolian series for which the period of deposition remains uncertain due to the significant discrepancy between the ages based on quartz and feldspar.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akulov, N.I. Rubtsova, M.N. (2011). Eolian deposits of rift zones. Quaternary International Elsevier Ltd and INQUA 234, 190201. http://dx.doi.org/10.1016/j.quaint.2010.04.012 (http://linkinghub.elsevier.com/retrieve/pii/S1040618210001357)Google Scholar
Balakauskas, L. Taminskas, J. Mazeika, J. Stancikaite, M. (2012). Lateglacial and early-Holocene palaeohydrological changes in the upper reaches of the Ula River: an example from southeastern Lithuania. The Holocene 23, 117126. http://dx.doi.org/10.1177/0959683612455552 (http://hol.sagepub.com/cgi/doi/10.1177/0959683612455552)Google Scholar
Bateman, M.D. Van Huissteden, J. (1999). The timing of last-glacial periglacial and eolian events, Twente, eastern Netherlands. J. Quat. Sci. 14, 277283.3.0.CO;2-W>CrossRefGoogle Scholar
Bertran, P. Bateman, M.D. Hernandez, M. Mercier, N. Millet, D. Sitzia, L. Tastet, J.-P. (2011). Inland eolian deposits of south-west France: facies, stratigraphy and chronology. J. Quat. Sci. 26, 374388. http://dx.doi.org/10.1002/jqs.1461 (http://doi.wiley.com/10.1002/jqs.1461)Google Scholar
Bitinas, A. (2004). The age of eolian deposits in Lithuania. Geologija 45, 15.Google Scholar
Bitinas, A. Damušytė, A. Stančikaitė, M. Aleksa, P. (2002). Geological development of the Nemunas River Delta and adjacent areas, West Lithuania. Geol. Quart. 46, 375389.Google Scholar
Björck, S. Walker, M.J.C. Cwynar, L.C. Johnsen, S. Knudsen, K.-L. Lowe, J.J. Wohlfarth, B. (1998). An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. J. Quat. Sci. 13, 283292. (http://doi.wiley.com/10.1002/%28SICI%291099-1417%28199807/08%2913%3A4%3C283%3A%3AAID-JQS386%3E3.0.CO%3B2-A, http://dx.doi.org/10.1002/(SICI)1099-1417(199807/08)13:4283::AID-JQS386/;3.0.CO;2-A)Google Scholar
Blažauskas, N. Jurgaitis, A. Šinkūnas, P. (1998). Sedimentation of Quaternary sandy deposits in South Lithuania. Litosfera 2, 87100.Google Scholar
Blažauskas, N. Jurgaitis, A. Šinkūnas, P. (2007). Patterns of Late Pleistocene proglacial fluvial sedimentation in the SE Lithuanian Plain. Sediment. Geol. 193, 193201. http://dx.doi.org/10.1016/j.sedgeo.2005.06.015 (http://linkinghub.elsevier.com/retrieve/pii/S0037073806002582)CrossRefGoogle Scholar
Buylaert, J.-P. Jain, M. Murray, A.S. Thomsen, K.J. Thiel, C. Sohbati, R. (2012). A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451. http://dx.doi.org/10.1111/j.1502-3885.2012.00248.x (http://doi.wiley.com/10.1111/j.1502-3885.2012.00248.x)Google Scholar
Cailleux, A. (1942). Les actiones éoliennes périglaciaires en Europe. Mém. Soc. Géol. Fr. 41, 1176.Google Scholar
Costa, P.J.M. Andrade, C. Dawson, a.G. Mahaney, W.C. Freitas, M.C. Paris, R. Taborda, R. (2012). Microtextural characteristics of quartz grains transported and deposited by tsunamis and storms. Sediment. Geol. 275–276, 5569. http://dx.doi.org/10.1016/j.sedgeo.2012.07.013 (http://linkinghub.elsevier.com/retrieve/pii/S0037073812002035)Google Scholar
Darrénougué, N. De Deckker, P. Fitzsimmons, K.E. Norman, M.D. Reed, L. van der Kaars, S. Fallon, S. (2009). A late Pleistocene record of eolian sedimentation in Blanche Cave, Naracoorte, South Australia. Quat. Sci. Rev. 28, 26002615. http://dx.doi.org/10.1016/j.quascirev.2009.05.021 (http://linkinghub.elsevier.com/retrieve/pii/S0277379109001875)Google Scholar
Duller, G.A.T. (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 37, 161165. http://dx.doi.org/10.1016/S1350-4487(02)00170-1 (http://linkinghub.elsevier.com/retrieve/pii/S1350448702001701)Google Scholar
Folk, R.L. Ward, W.C. (1957). Brazos River bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 27, 326.Google Scholar
Gaigalas, A. Pazdur, A. (2008). Chronology of buried soils, forest fires and extreme migration of dunes on the Kuršių nerija spit (Lithuanian coast). Landf. Anal. 9, 187191.Google Scholar
Gilbert, E.R. De Camargo, M.G. Sandrini-Neto, L. (2012). Rysgran: Grain Size Analysis, Textural Classifications and Distribution of Unconsolidated Sediments.Google Scholar
Goździk, J. (1998). Struktury sedymentacyjne w eolicznych piaskach pokrywowych w Polsce. Mycielska-Dowgiałło, E. Struktury sedymentacyjne i postsedymentacyjne w osadach czwartorzędowych i ich wartość interpretacyjna. Uniwersytet Warszawski, Warsaw. 167191.Google Scholar
Gudelis, V. (1998). A catastrophic dune forest fire on the Kuršiu Nerija spit (Lithuanian coast) and its impact on the coastal population in Late Neolithic times. Pact 54, 4550.Google Scholar
Gudelis, V. Michaliukaitė, E. (1976). Ancient parabolic dunes on the spit of Kuršių Nerija. Geogr. Lith. V 5663.Google Scholar
Guobytė, R. Satkūnas, J. (2011). Chapter 19 — Pleistocene glaciations in Lithuania. Dev. Quat. Sci. 15, 231246. http://dx.doi.org/10.1016/B978-0-444-53447-7.00019-2 (http://www.sciencedirect.com/science/article/pii/B9780444534477000192)Google Scholar
Howari, F.M. Baghdady, A. Goodell, P.C. (2007). Mineralogical and gemorphological characterization of sand dunes in the eastern part of United Arab Emirates using orbital remote sensing integrated with field investigations. Geomorphology 83, 6781. http://dx.doi.org/10.1016/j.geomorph.2006.06.015 (http://linkinghub.elsevier.com/retrieve/pii/S0169555X06002431)Google Scholar
Huntley, D.J. Baril, M.R. (1997). The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 1113.Google Scholar
Huntley, D.J. Hancock, R.G.V. (2001). The Rb contents of K-feldspar grains being measured in optical dating. Ancient TL 19, 4346.Google Scholar
Jankowski, M. (2012). Lateglacial soil paleocatena in inland-dune area of the Toruń Basin, Northern Poland. Quat. Int. 265, 116125. http://dx.doi.org/10.1016/j.quaint.2012.02.006 (http://linkinghub.elsevier.com/retrieve/pii/S1040618212000730)Google Scholar
Kaiser, K. Hilgers, A. Schlaak, N. Jankowski, M. Kühn, P. Bussemer, S. Przegiętka, K. (2009). Palaeopedological marker horizons in northern central Europe: characteristics of Lateglacial Usselo and Finow soils. Boreas 38, 591609. http://dx.doi.org/10.1111/j.1502-3885.2008.00076.x (http://doi.wiley.com/10.1111/j.1502-3885.2008.00076.x)Google Scholar
Kalińska, E. (2012). Geological setting and sedimentary characteristics of the coversands distributed in the western part of the Blonie glaciolacustrine basin (Central Poland) — preliminary results. Bull. Geol. Soc. Finl. 84, 3344.CrossRefGoogle Scholar
Kalińska, E. Nartišs, M. (2014). Pleistocene and Holocene eolian sediments of different location and geological history: a new insight from rounding and frosting of quartz grains. Quat. Int. 328–329, 311322. http://dx.doi.org/10.1016/j.quaint.2013.08.038 Google Scholar
Kalińska-Nartiša, E. Nartišs, M. Thiel, C. Buylaert, J.-P. Murray, A.S. (2014). Late-glacial to Holocene eolian deposition in northeastern Europe — the timing of sedimentation at the Iisaku site (NE Estonia). Quat. Int. http://dx.doi.org/10.1016/j.quaint.2014.08.039 Google Scholar
Kasper-Zubillaga, J.J. Zolezzi-Ruiz, H. (2007). Grain size, mineralogical and geochemical studies of coastal and inland dune sands from El Vizcaíno Desert, Baja California Peninsula, Mexico. Rev. Mex. Cienc. Geol. 24, 423438.Google Scholar
Kasse, C. (1997). Cold-climate eolian sand-sheet formation in North-Western Europe (c. 14–12.4 ka); a response to permafrost degradation and increased aridity. Permafr. Periglac. Process. 8, 295311.Google Scholar
Kasse, C. (2002). Sandy eolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Prog. Phys. Geogr. 26, 507532. http://dx.doi.org/10.1191/0309133302pp350ra (http://ppg.sagepub.com/cgi/doi/10.1191/0309133302pp350ra)Google Scholar
Kasse, C. Vandenberghe, D. De Corte, F. Van Den Haute, P. (2007). Late Weichselian fluvio-eolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. J. Quat. Sci. 22, 695708. http://dx.doi.org/10.1002/jqs Google Scholar
Kocurek, G. (1986). Origins of low-angle stratification in eolian deposits. Eolian geomorphology. Proceedings of the 17th Annual Inghampton Geomorphology Symposium Allen & Unwin, London. 177195.Google Scholar
Kolstrup, E. (2007). Lateglacial older and younger coversand in northwest Europe: chronology and relation to climate and vegetation. Boreas 36, 6575. http://dx.doi.org/10.1080/03009480600827280 (http://doi.wiley.com/10.1080/03009480600827280)Google Scholar
Koster, E.A. (2005). Recent advances in luminescence dating of Late Pleistocene (cold-climate) eolian sand and loess deposits in western Europe. Permafr. Periglac. Process. 16, 131143. http://dx.doi.org/10.1002/ppp.512 (http://doi.wiley.com/10.1002/ppp.512)Google Scholar
Koster, E.A. (2009). The “European Eolian Sand Belt”: Geoconservation of Drift Sand Landscapes. 93110. http://dx.doi.org/10.1007/s12371-009-0007-8 Google Scholar
Krinsley, D.H. Doornkamp, J.C. (1973). Atlas of Quartz Sand Surface Textures. Elsevier Inc., Oxford. 193.Google Scholar
Kuenen, P.H. (1960). Experimental abrasion 4: eolian action. J. Geol. 4, 427449.Google Scholar
Kuenen, P.H. Peredok, W.G. (1962). Experimental abrasion 5. Frosting and defrosting of quartz grains. J. Geol. 70, 648658.Google Scholar
Küster, M. Fülling, A. Kaiser, K. Ulrich, J. (2014). Eolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response. Geomorph. Elsevier B.V. 211, 6476. http://dx.doi.org/10.1016/j.geomorph.2013.12.030 (http://linkinghub.elsevier.com/retrieve/pii/S0169555X13006387)Google Scholar
Langroudi, A. A., Jefferson, I. O'hara-Dhand, K. Smalley, I. (2014). Geomorphology micromechanics of quartz sand breakage in a fractal context. 211, 110.Google Scholar
Lisá, L. (2004). Exoscopy of Moravian eolian sediments. Bull. Geosci. 79, 177182.Google Scholar
Mahaney, W.C. (2002). Atlas of Sand Grain Surface, Textures and Applications. Oxford University Press, Oxford.Google Scholar
Marks, L. Gałązka, D. Krzymińska, J. Nita, M. Stachowicz-Rybka, R. Witkowski, A. Woronko, B. Dobosz, S. (2014). Marine transgressions during Eemian in northern Poland: a high resolution record from the type section at Cierpięta. Quat. Int. 328–329, 4559. http://dx.doi.org/10.1016/j.quaint.2013.12.007 (http://linkinghub.elsevier.com/retrieve/pii/S1040618213009270)Google Scholar
McKee, E.K. (1980). A study of global sand seas: introduction to a study of global sand seas. US Geological Survey. Professional Paper (450 pp)Google Scholar
Mejdahl, V. (1979). Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 6172.Google Scholar
Miall, A.D. (1977). Lithofacies types and vertical profile models in braided river deposits: a summary. Fluvial Sedimentol. 5, 597604.Google Scholar
Miall, A.D. (1978). Lithofacies types and vertical profile models in braided river deposits: a summary. Miall, A.D. Fluvial Sedimentology. Can. Soc. Petrol. Geol. Mem. 597604.Google Scholar
Molodkov, A. Bitinas, A. (2006). Sedimentary record and luminescence chronology of the Lateglacial and Holocene eolian sediments in Lithuania. Boreas 35, 244254. http://dx.doi.org/10.1080/03009480600584915 Google Scholar
Mountney, N.P. (2012). A stratigraphic model to account for complexity in eolian dune and interdune successions. Sedimentology 59, 964989. http://dx.doi.org/10.1111/j.1365-3091.2011.01287.x (http://doi.wiley.com/10.1111/j.1365-3091.2011.01287.x)Google Scholar
Muhs, D.R. (2004). Mineralogical maturity in dunefields of North America, Africa and Australia. Geomorphology 59, 247269. http://dx.doi.org/10.1016/j.geomorph.2003.07.020 (http://linkinghub.elsevier.com/retrieve/pii/S0169555X03003271)Google Scholar
Murray, A.S. Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 5773. http://dx.doi.org/10.1016/S1350-4487(99)00253-X (http://linkinghub.elsevier.com/retrieve/pii/S135044879900253X)Google Scholar
Murray, A.S. Marten, R. Johnston, A. Martin, P. (1987). Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. J. Radioanal. Nucl. Chem. 115, 263288.Google Scholar
Murray, A.S. Thomsen, K.J. Masuda, N. Buylaert, J.P. Jain, M. (2012). Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiat. Meas. 47, 688695.Google Scholar
Mycielska-Dowgiałło, E. (1993). Estimates of Late Glacial and Holocene eolian activity in Belgium, Poland and Sweden. Boreas 22, 165170. http://dx.doi.org/10.1111/j.1502-3885.1993.tb00177.x Google Scholar
Mycielska-Dowgiałło, E. (2007). Metody badań cech teksturalnych osadów klastycznych i wartość interpretacyjna wyników. Mycielska-Dowgiałło, Elżbieta, and Rutkowski, J. Badania cech teksturalnych osadów czwartorzędowych i wybrane metody oznaczania ich wieku. WSWPR, 95189.Google Scholar
Mycielska-Dowgiałło, E. Dzierwa, K. (2003). Rekonstrucja dynamiki procesów eolicznych i czasu ich trwania na podstawie wybranych cech teksturalnych osadów wydmy w Cięciwie. Prz. Geol. 51, 163167.Google Scholar
Mycielska-Dowgiałło, E. Woronko, B. (1998). Analiza obtoczenia i zmatowienia powierzchni ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna. Prz. Geol. 46, 12751281.Google Scholar
Mycielska-Dowgiałło, E. Woronko, B. (2004). The degree of aeolization of Quaternary deposits in Poland as a tool for stratigraphic interpretation. Sediment. Geol. 168, 149163. http://dx.doi.org/10.1016/j.sedgeo.2003.12.006 (http://linkinghub.elsevier.com/retrieve/pii/S0037073803003737)Google Scholar
Narayana, A.C. Mohan, R. Mishra, R. (2010). Morphology and surface textures of quartz grains from freshwater lakes of McLeod Island, Larsemann Hills, East Antarctica. Curr. Sci. 99, 14201424.Google Scholar
Olley, J.M. Murray, A.S. Roberts, R.G. (1996). The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quat. Sci. Rev. 15, 751760.Google Scholar
Prescott, J.R. Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat. Meas. 23, 497500.Google Scholar
Ribolini, A. Bini, M. Consoloni, I. Isola, I. Pappalardo, M. Zanchetta, G. Fucks, E. Panzeri, L. Martini, M. Terrasi, F. (2014). Late-Pleistocene wedge structures along the Patagonian Coast (Argentina): chronological constraints and palaeo-environmental implications. Geogr. Ann. A Phys. Geogr. http://dx.doi.org/10.1111/geoa.12038 (http://doi.wiley.com/10.1111/geoa.12038)Google Scholar
Rinterknecht, V.R. Clark, P.U. Raisbeck, G.M. Yiou, F. Bitinas, A. Brook, E.J. Marks, L. Zelcs, V. Lunkka, J.-P. Pavlovskaya, I.E. Piotrowski, J.A. Raukas, A. (2006). The last deglaciation of the southeastern sector of the Scandinavian ice sheet. Science (New York, N.Y.) 311, 14491452. http://dx.doi.org/10.1126/science.1120702 (http://www.ncbi.nlm.nih.gov/pubmed/16527977)Google Scholar
Rinterknecht, V.R. Bitinas, A. Clark, P.U. Raisbeck, G.M. Yiou, F. Brook, E.J. (2008). Timing of the last deglaciation in Lithuania. Boreas 37, 426433. http://dx.doi.org/10.1111/j.1502-3885.2008.00027.x (http://doi.wiley.com/10.1111/j.1502-3885.2008.00027.x)Google Scholar
Satkūnas, J. (1993). Conditions of Occurrence, Structure and Forming Peculiarities of the Interglacial Sediments in Eastern Lithuania. Vilnius, (26 pp)Google Scholar
Satkūnas, J.A. Gaigalas, A.I. Hütt, G.I. (1991). Lithogenesis and formation time of the Skersabaliai eolian massif. Geokronologicheskie i izotopno-geokhimicheskie issledovaniya v chetviertnichnoj geologii i arkheologii. Vilnius University Press, Vilnius. 1426.Google Scholar
Satkūnas, J. Grigiene, A. Jusiene, A. Damusyte, A. Mazeika, J. (2009). Middle Weichselian palaeolacustrine basin in the Venta river valley and vicinity (northwest Lithuania), exemplified by the Purviai outcrop. Quaternary International Elsevier Ltd and INQUA 207, 1425. http://dx.doi.org/10.1016/j.quaint.2008.12.003 (http://linkinghub.elsevier.com/retrieve/pii/S1040618208003509)Google Scholar
Schwamborn, G. Schirrmeister, L. Frütsch, F. Diekmann, B. (2012). Quartz weathering in freeze–thaw cycles: experiment and application to the El'Gygytgyn crater lake record for tracing Siberian permafrost history. Geogr. Ann. A Phys. Geogr. 94, 481499. http://dx.doi.org/10.1111/j.1468-0459.2012.00472.x (http://doi.wiley.com/10.1111/j.1468-0459.2012.00472.x)Google Scholar
Šeirienė, V. Kabailienė, M. Kasperovičienė, J. Mažeika, J. Petrošius, R. Paškauskas, R. (2009). Reconstruction of postglacial palaeoenvironmental changes in eastern Lithuania: evidence from lacustrine sediment data. Quat. Int. 207, 5868. http://dx.doi.org/10.1016/j.quaint.2008.12.005 Google Scholar
Shrivastava, P.K. Asthana, R. Roy, S.K. Swain, A.K. Dharwadkar, A. (2012). Provenance and depositional environment of epi-shelf lake sediment from Schirmacher Oasis, East Antarctica, vis-à-vis scanning electron microscopy of quartz grain, size distribution and chemical parameters. Polar Sci. 6, 165182. http://dx.doi.org/10.1016/j.polar.2012.03.006 (http://linkinghub.elsevier.com/retrieve/pii/S1873965212000126)Google Scholar
Sokołowski, T. Wacnik, A. Woronko, B. Madeja, J. (2014). Eemian Weichselian pleniglacial fluvial deposits in S Poland (an example of the Vistula River valley in Kraków). Geol. Quart. 58, 7184. http://dx.doi.org/10.7306/gq.1138 (https://gq.pgi.gov.pl/article/view/9273)Google Scholar
Stančikaitė, M. (2006). Late glacial environmental history in Lithuania. Archaeol. Balt. 7, 199208.Google Scholar
Stančikaitė, M. Kisielienė, D. Strimaitienė, A. (2004). Vegetation response to the climatic and human impact changes during the Late Glacial and Holocene: case study of the marginal area of Baltija Upland, NE Lithuania. Baltica 17, 1733.Google Scholar
Stančikaitė, M. Šinkūnas, P. Šeirienė, V. Kisielienė, D. (2008). Patterns and chronology of the Lateglacial environmental development at Pamerkiai and Kašušiai, Lithuania. Quat. Sci. Rev. 27, 127147. http://dx.doi.org/10.1016/j.quascirev.2007.01.014 Google Scholar
Stančikaitė, M. Kisielienė, D. Moe, D. Vaikutienė, G. (2009). Lateglacial and early Holocene environmental changes in northeastern Lithuania. Quat. Int. 207, 8092. http://dx.doi.org/10.1016/j.quaint.2008.10.009 Google Scholar
Svensson, A. Andersen, K.K. Bigler, M. Clausen, H.B. Dahl-Jensen, D. Davies, S.M. Johnsen, S.J. Muscheler, R. Parrenin, F. Rasmussen, S.O. Röthlisberger, R. Seierstad, I. Steffensen, J.P. Vinther, B.M. (2008). A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 4757. http://dx.doi.org/10.5194/cp-4-47-2008 (http://www.clim-past.net/4/47/2008/)Google Scholar
Swezey, C.S. (1998). The indentification of eolian sands and sandstones. C. R. Acad. Sci. 327, 513518.Google Scholar
Swezey, C.S. (2001). Sequence stratigraphy in eolian systems. AAPG Annual Convention Program. A196 Google Scholar
Thiel, C. Buylaert, J.-P. Murray, A. Terhorst, B. Hofer, I. Tsukamoto, S. Frechen, M. (2011). Luminescence dating of the Stratzing loess profile (Austria) — testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International Elsevier Ltd and INQUA 234, 2331. http://dx.doi.org/10.1016/j.quaint.2010.05.018 (http://linkinghub.elsevier.com/retrieve/pii/S1040618210002156)Google Scholar
Tolksdorf, J.F. Kaiser, K. (2012). Holocene eolian dynamics in the European sand-belt as indicated by geochronological data. Boreas 41, 408421. http://dx.doi.org/10.1111/j.1502-3885.2012.00247.x (http://doi.wiley.com/10.1111/j.1502-3885.2012.00247.x)Google Scholar
Tripaldi, A. Ciccioli, P.L. Alonso, M.S. Forman, S.L. (2010). Petrography and geochemistry of late Quaternary dune fields of western Argentina: Provenance of eolian materials in southern South America. Eolian Res. Elsevier B.V. 2, 3348. http://dx.doi.org/10.1016/j.aeolia.2010.01.001 (http://linkinghub.elsevier.com/retrieve/pii/S1875963710000029)Google Scholar
Van der Hammen, T. (1951). Late-glacial flora and periglacial phenomena in the Netherlands. Leidse. Geol. Meded. 17, 71183.Google Scholar
Van der Hammen, T. Wijmstra, T.A. (1971). The Upper Quaternary of the Dinkel valley (Twente, Eastern Overijssel, the Netherlands). Med. Rijsk Geol. Dienst 22, 55212.Google Scholar
Vandenberghe, J. (2013). Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth Sci. Rev. 121, 1830. http://dx.doi.org/10.1016/j.earscirev.2013.03.001 (http://linkinghub.elsevier.com/retrieve/pii/S0012825213000469)Google Scholar
Vandenberghe, D.A.G. Derese, C. Kasse, C. Van den Haute, P. (2013). Late Weichselian (fluvio-)eolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quat. Sci. Rev. Elsevier Ltd 68, 96113. http://dx.doi.org/10.1016/j.quascirev.2013.02.009 (http://linkinghub.elsevier.com/retrieve/pii/S0277379113000632)Google Scholar
Velichko, A.A. Catto, N.R. Yu Kononov, M. Morozova, T.D. Yu Novenko, E. Panin, P.G. Ya Ryskov, G. Semenov, V.V. Timireva, S.N. Titov, V.V. Tesakov, A.S. (2009). Progressively cooler, drier interglacials in southern Russia through the Quaternary: evidence from the Sea of Azov region. Quat. Int. 198, 204219. http://dx.doi.org/10.1016/j.quaint.2008.06.005 http://linkinghub.elsevier.com/retrieve/pii/S1040618208001912 Google Scholar
Vieira, G.T. Mycielska-Dowgiallo, E. Woronko, B. (2003). Sedimentological analysis of sandy-gravel accumulations, Serra da Estrela plateaux (Portugal). Landf. Anal. 4, 99107.Google Scholar
Walker, M.J.C. Bjo, S. Lowe, J.J. Cwynar, L.C. Johnsen, S. Knudsen, K. Wohlfarth, B. (1999). Isotopic “events” in the GRIP ice core: a stratotype for the Late Pleistocene. Quat. Sci. Rev. 18, 11431150.Google Scholar
Wang, L. Shi, Z.H. Wu, G.L. Fang, N.F. (2014). Freeze/thaw and soil moisture effects on wind erosion. Geomorphology 207, 141148.Google Scholar
Werner, B.T. Merino, E. (1997). Concave sand grains in eolian envrionemnts: evidence, mechanism, and modeling. J. Sediment. Res. 67, 754762.Google Scholar
Wintle, A.G. (2008). Luminescence dating: where it has been and where it is going. Boreas 37, 471482. http://dx.doi.org/10.1111/j.1502-3885.2008.00059.x http://doi.wiley.com/10.1111/j.1502-3885.2008.00059.x Google Scholar
Wintle, A.G. Murray, A.S. (2006). A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 41, 369391. http://dx.doi.org/10.1016/j.radmeas.2005.11.001 http://linkinghub.elsevier.com/retrieve/pii/S1350448705003227 Google Scholar
Woronko, B. (2012). Micromorphology of quartz grains as a tool in the reconstruction of periglacial environment. Churski, P. Contemporary Issues in Polish, Geography. 111131.Google Scholar
Woronko, B. Hoch, M. (2011). The development of frost-weathering microstructures on sand-sized quartz grains: examples from Poland and Mongolia. Permafr. Periglac. Process. 227, 214227. http://dx.doi.org/10.1002/ppp.725 http://doi.wiley.com/10.1002/ppp.725 Google Scholar
Woronko, B. Rychel, J. Karasiewicz, M.T. Ber, A. Krzywicki, T. Marks, L. Pochocka-Szwarc, K. (2013). Heavy and light minerals as a tool for reconstructing depositional environments: an example from the Jałówka site (northern Podlasie region, NE Poland). Geologos 19, 4766. http://dx.doi.org/10.2478/logos-2013-0004 http://www.degruyter.com/view/j/logos.2013.19.issue-1-2/logos-2013-0004/logos-2013-0004.xml Google Scholar
Zeeberg, J. (1998). The European sand belt in eastern Europe — and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27, 127139.Google Scholar
Zieliński, P. Issmer, K. (2008). Propozycja kodu genetycznego osadów środowiska eolicznego. Prz. Geol. 56, 6772.Google Scholar
Zieliński, P. Fedorowicz, S. Zaleski, I. (2009). Sedimentary succession in Berezno in the Volhynia Polesie (Ukraine) as an example of depositional environment changes in the periglacial zone at the turn of the Vistulian and the Holocene. Geologija 51, 97108. http://dx.doi.org/10.2478/v10056-009-0011-3 http://versita.metapress.com/openurl.asp?genre=article&id=doi:10.2478/v10056-009-0011-3 Google Scholar
Zieliński, P. Sokołowski, R.J. Fedorowicz, S. Jankowski, M. (2011). Stratigraphic position of fluvial and eolian deposits in the Żabinko site (W Poland) based on TL dating. Geochronometria 38, http://dx.doi.org/10.2478/s13386-011-0005-x http://www.springerlink.com/index/10.2478/s13386-011-0005-x Google Scholar